
Differential Operators and the Divergence Theorem 

  
One of the most important and useful mathematical constructs is the "del operator", usually 

denoted by the symbol ∇ (which is called the "nabla").  This can be regarded as a vector 
whose components in the three principle directions of a Cartesian coordinate system are 
partial differentiations with respect to those three directions.  Of course, the partial 
differentiations by themselves have no definite magnitude until we apply them to some 
function of the coordinates.  Letting i, j, k denote the basis vectors in the x,y,z directions, 
the del operator can be expressed as 

  
 

  
All the main operations of vector calculus, namely, the divergence, the gradient, the curl, 
and the Laplacian can be constructed from this single operator.  The entities on which we 
operate may be either scalar fields or vector fields.  A scalar field is just a single-valued 
function of the coordinates x,y,z.  For example, the static pressure of air in a certain region 
could be expressed as a scalar field p(x,y,z), because there is just a single value of static 
pressure p at each point.  On the other hand, a vector field assigns a vector v to each point 
in space.  An example of this would be the velocity v(x,y,z) of the air throughout a certain 
region. 
  
If we simply multiply a scalar field such as p(x,y,z) by the del operator, the result is a 
vector field, and the components of the vector at each point are just the partial derivatives 
of the scalar field at that point, i.e., 
  

 

  
This is called the gradient of p.  On the other hand, if we multiply a vector field v(x,y,z) by 
the del operator we first need to decide what kind of "multiplication" we want to use, 
because there are two different kinds of vector multiplication, commonly called the dot 
product and the cross product.  For two arbitrary vectors  a = axi + ayj + azk  and  b = bzi + 

byj + bzk  the dot product a⋅b and the cross product a×b are defined as 

  
 

  
Intuitively, the dot product is a scalar equal to the product of the magnitudes of a and b 
times the cosine of the angle between them, and the cross product is a vector perpendicular 
to both a and b (with direction determined conventionally by the "right hand rule") and 
whose magnitude is equal to the product of the magnitudes of a and b times the sine of the 
angle between them.  Since the dot product yields a scalar, it is often called the "scalar 
product".  Likewise the cross product is often called the "vector product". 
  

The dot product of ∇ and a vector field v(x,y,z) = v
x
(x,y,z)i + v

y
(x,y,z)j + v

z
(x,y,z)k gives 

a scalar, known as the divergence of v, for each point in space: 
  

 

  

The cross product of ∇ and a vector field v(x,y,z) gives a vector, known as the curl of v, for 
each point in space: 
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Notice that the gradient of a scalar field is a vector field, the divergence of a vector field is 
a scalar field, and the curl of a vector field is a vector field.  Can we construct from the del 
operator a natural differential operator that creates a scalar field from a scalar field?  
Actually we already have the ingredients for such an operator, because if we apply the 
gradient operator to a scalar field to give a vector field, and then apply the divergence 
operator to this result, we get a scalar field.  This is sometimes called the "div grad" of a 
scalar field, and is given by 

  
 

  

For convenience we usually denote this operator by the symbol ∇2, and it is usually called 

the Laplacian operator, because Laplace studied physical applications of scalar fields ϕ
(x,y,z) (such as the potential of an inverse-square force law) that satisfy the equation 

, i.e., 
 

  
 

  
This formula arises not only in the context of potential fields (such as the electro-static 
potential in an electric field, and the velocity potential in a frictionless ideal fluid), it also 

appears in Poisson's equation  and in the fundamental wave equation
 

  
 

  
where c is the speed of propagation of the wave.  Incidentally, this suggests another useful 
differential operator, formed by bringing the right hand term over to the left side to give 

  
 

  
This operator is known as the d'Alembertian (because the wave equation was first studied 
by Jean d'Alembert), and it could be regarded as the dot product of two "dal" operators 

  
 

  
where i,j,k,l are basis vectors of a four-dimensional Cartesian coordinate system. 
  

One of the most important theorems in vector analysis is known as the Divergence 
Theorem, which is also sometimes called Gauss' Theorem.  This is essentially just an 
application of the fundamental theorem of calculus 

  
 

  
This enables us to express the integral of the quantity df/dx along an interval in terms of the 
values of  f  itself at the endpoints of that interval.  Now suppose we are given a scalar 
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function f(x,y,z) throughout a region V enclosed by a surface S, and we want to evaluate 

the integral of the quantity ∂f/∂x over this entire region.  This can be written as 

  
 

  
where the three integrals are evaluated over suitable ranges to cover the entire region V.  
For any fixed values of y = y0 and z = z0 the function f(x,y0,z0) is totally dependent on x, 

so we can evaluate the integral along any line parallel to the x axis through the region V for 
any particular y0,z0 using the fundamental theorem of calculus 

  
 

  
where a,b are the x values at which the line intersects the surface S.  (For ease of 
description we are assuming every line parallel to the x axis intersects the surface in only 
two points, but this restriction turns out to be unnecessary.)  We now just need to integrate 
the above quantity over suitable ranges of y

0
 and z

0
 to give the integral throughout the 

entire region V.  Notice that the two points (a,y0,x0) and (b,y0,x0) are both, by definition, 

on the surface S, at opposite ends of a line interval parallel to the x axis.  Hence, we can 
cover all the contributions by integrating the value of the function f(x,y,z) over the entire 
surface S.   
  
Of course, we recognize that f(a,y

0
,z

0
) is subtracted from the total, whereas f(b,y

0
,z

0
) is 

added, so it's clear that we need to apply a weighting factor to f(x,y,z) at each point when 
we integrate.  The value for points on the "low" end of the intervals must be subtracted, and 
the value for points on the "high" end of the intervals must be added.  Furthermore, if we 
want to evaluate the integration over the surface area of S by integrating over dS, we need 
to scale the magnitude of the contribution of each point to give the appropriate weight to 
each incremental region dS of the surface, because a portion of the surface that is very 
oblique to the yz plane doesn't "contribute as many line segments" parallel to the x axis as 
does an equal increment of the surface that is parallel to the yz plane.   
  
Clearly the necessary scale factor at each point is the cosine of the angle between the 
positive x axis and the normal to the surface at that point.  Notice that this automatically 
gives us the appropriate sign for each contribution as well, because (for a convex surface) 
the normal to the surface will have a positive x component on one end of the interval and a 
negative x component on the other, which means the cosines of the respective angles will 
have opposite signs.  (Again, for ease of description we are assuming a convex surface, but 
it's not hard to show that this restriction is unnecessary, since a given line parallel to the x 
axis can have multiple segments which can be treated separately.) 

  
Consequently, we can write our original integral as 

  
 

  
where cos(n,i) denotes the cosine of the angle between a unit vector normal to the surface 
and a basis vector in the positive x direction.  Naturally, since the coordinate axes are 
symmetrical, we could arrive at analogous results with x replaced by either y or z, and i 
replaced by j or k respectively. 
  
Now suppose we are given a vector field F(x,y,z) with the components Fx(x,y,z), Fy(x,y,z), 

and Fz(x,y,z).  Using the above results and simple additivity we have 
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The integrand on the left side is ∇⋅F, i.e. the divergence of F.  Also, notice that cos(n,i), cos
(n,j), and cos(n,k) are the components of the normal unit vector n, so the integrand on the 

right side is simply F⋅n, i.e., the dot product of F and the unit normal to the surface.  Hence 
we can express the Divergence Theorem in its familiar form 

  
 

  
Several interesting facts can be deduce from this theorem.  For example, if we define F as 

the gradient of the scalar field ϕ(x,y,z) we can substitute ∇ϕ for F in the above formula to 
give 

 

  

The integrand of the volume integral on the left is the Laplacian of ϕ, so if ϕ is harmonic 
(i.e., a solution of Laplace's equation) the left side vanishes.  The integrand of the right 
hand integral is the normal "flux" through the surface, so we see that the integral of the 
normal flux over any closed surface (in a region that everywhere satisfies Laplace's 
equation) is zero.  It follows that there can be no local maximum or minimum inside a 
region where Laplace's equation is satisfied, because such a point would, by definition, be 
completely enclosed by a surface of everywhere positive (or everywhere negative) normal 
flux, making it impossible for the integral of the flux over the surface to vanish.  This, in 

turn, implies that if ϕ is constant over an entire closed surface (where Laplace's equations is 

satisfied) then the value of ϕ is constant throughout the enclosed volume, because 
otherwise the volume would have to contain a local maximum or minimum.  Combining 
these facts with the additivity of harmonic functions, we can conclude that there is a unique 
harmonic function within an enclosed region that has specified values on the enclosing 

surface, because if ϕ1 and ϕ2 are two functions satisfying those boundary conditions, the 

harmonic field ϕ1 - ϕ2 is zero over the entire boundary, and therefore it vanishes throughout 

the interior as well. 
  
If we allow non-zero charge or mass density (or sources or sinks) in the enclosed region, 

such that Poisson's equation ∇2ϕ = -4πρ is satisfied, then the left hand integral is the net 
charge contained within the volume, and this equals the integral of the normal flux over the 
enclosing surface.  This is often called Gauss' law of electrostatics, and it constitutes one of 
Maxwell's equations. 
  
Another important consequence of the Divergence Theorem can be seen by noting that the 

scalar quantity ∇ϕ⋅n at any given point on the surface equals the partial derivative ∂ϕ/∂n 
where n is the displacement parameter in the direction normal to the surface.  Furthermore, 
if the surface in question is a sphere - which we can assume without loss of generality is 
centered at the origin - then the normal displacement parameter n is equal to the radial 
parameter r.  So for such a spherical surface we have 

  
 

  

Recall that, in terms of spherical coordinates r, θ, and φ, where θ is latitude (zero at the 

North Pole) and φ is longitude (zero on the positive x axis) the basic line element in space is 
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so an incremental change dθ at constant r and φ corresponds to a change ds = r dθ, whereas 

an incremental change dφ at constant r and θ gives ds = r sin(θ) dφ.  Hence the surface 

element in terms of θ and φ is dS = r2 sin(θ) dθ dφ , so the preceding integral can be written 
as 

  
 

  

Applying Leibniz's Rule for the derivative of an integral, and multiplying by 4π/4π, this 
becomes 

  
 

  

The quantity in the square brackets is just the mean value of ϕ(r,θ,φ) on the surface of the 
sphere, and this equation shows that the derivative of the mean value with respect to the 

radius r vanishes, so the mean value of ϕ on the surface of a sphere centered at any fixed 
point is independent of the radius.  Considering the limit as r approaches zero, it's clear that 

the mean value of a harmonic function ϕ on the surface of a sphere (of any radius) is equal 

to the value of ϕ at the center of the sphere. 
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